SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 8

SOLUTIONS

Problem 1. Find an area form w on S? such that for any rotation about some axis in R3, R :
S? — S2, we have that R*w = w. Prove the invariance property, and show that this volume form
is unique up to positive scalar multiple.

[Remarks: You may use the natural coordinates for the tangent spaces as subspaces of R? (ie,
you may write down a form on R? and restrict it to S? to construct the form). You may use the
fact that rotations around the coordinate axes generate the group of all rotations.]

Solution 1. We claim that the 2-form w = xdy A dz — ydxz N dz + zdx A dy is invariant under all
rotations. The rotations are generated by the vector fields

0 0

X1 = y% —l’aiy
0 0

XQ = Z% —Sﬂa
0 0

Xy = yo -2 2
3 Yoz Z@y

We will show that Lx,w = 0. We verify this for X, the equations for X, and X3 follow similarly:

dv = 3dxANdyNdz

tx,dw = 3ydyANdz+3zvdr ANdz

ix,w = (—y*dz+yzdy) — (2?2 dz — 22 dx)
zzdr +yzdy — (2° + y?) dz

dix,w = zdzANdr+ydzNdy—2ydyNdz—2zxdr Adz
—3xdr ANdz — 3ydy Ndz

Lx,w = ix,dw+dix,w

= 0.

The calcluation for Lx, and Lx, is analogous. To see that w is unique up to scalar multiple, fix
any point 29 € S? and let 3 be any other 2-form invariant under all rotations R. Then there exists
a unique ¢ > 0 such that 3(zo) = cw(zo), since dim A?(T,) = (g) = 1. If x € S? is any other point,
there exists a rotation R such that R(xz) = zp. Then

B(z)(v1,v2) = R*B(x)(v1,v2) = B(R(2))(dR(v1), dR(v2)) = B(wo)(dR(v1, dR(v2))
= cw(xo)(dR(v1), dR(v2)) = (R™1)*w(xo)(dR(v1), dR(v2)) = cw(@)(v1,v2)

Hence 8 = cw as 2-forms. O



Solution 2. With w as in Solution 1, we verify R*w = w directly for rotations about the z-axis

cos —sinf O
R=|sinf cosf@ O
0 0 1

Written as a function,

R(z,y,z) = (xcosf — ysin b, xsinb + y cos b, z).
Then

R*'w(x,y,z)(v1,v2) = w(zcosf —ysinb, zsinf + ycos b, z)(Rvy, Rvg).

Where Rv; denotes R acting as a matrix. It follows that

R*w = (xcosf — ysinf) d(xsind + ycosl) Adz
— (zsinf + ycosf) d(xcosh — ysint) Ndz + zd(xcosf — ysinf) A d(zsinf + ycos )

Gathering like terms, we see that the dz A dz term is coefficient to

(zcosf — ysinf) -sinf — (zsind + ycos ) - cos @ = —y(sin?§ 4 cos® ) = —.
The dy A dz coefficent is

(zcosf —ysinf) - cosf 4 (zsind + ycosh) - sinf = x(cos?  + sin? ) = z.
The dx A dy term is

z[cos B - cos @ — (—sinf - sin 0)] = z(cos? O + sin? ) = z
It follows that R*w = w. The proof of uniqueness follows as in Solution 1.

Problem 2.

(1) Prove the following convenient formula for the exterior derivative of a 1-form «, where X
and Y are vector fields on M. Note that if f € C°°(M), then X - f denotes the derivative
of f along the vector field X.

da(X,Y) = X - (a(Y)) =Y - («(X)) = a([X, Y])

[Hint: Any 1-form is locally a linear combination of forms of the form wdv for u,v € C.
Evaluate both side of the desired equality for such forms.|
(2) Use this to find a formula for Lxa(Y), where X and Y are C* vector fields and « is a
1-form on M. Think magically!

Solution. Consider a form o = wdv. Then da = du A dv, so

da(X,Y) = du(X)dv(Y) — du(Y)dv(X) = (X -u)(Y -v) = (Y - u)(X - v)
On the other hand,



X (aY) = X-(u-(Y-v))
(X -u)-(Y-v)+u-(XYv)

Y (@(X) = (- (X 0))
—(Yu) - (Xv) —u- (YXv)
—o([X,Y]) = —u(XYv—-YXvo)

Adding each of these terms shows the desired equality.
Finally,

LxaY) = ixda(Y)+d(ixa)(Y)
X (oY) =Y - (X)) — [ X, Y]) + ¥ - (a(X))
X (oY) = a([X, Y]).

U

Problem 3. Fix a 2n-dimensional manifold M. Recall that a 2-form w is called symplectic if dw = 0
and the n-fold wedge product of w is a volume form on M.

(1) Show that a closed 2-form w is symplectic if and only if for every z € M and nonzero vector
X € T, M, there exists Y € T, M such that w(X,Y) # 0.
(2) Show that if v is any 1-form on M, there exists a unique vector field X, such that tx_ w = a.

Solution.

(1) First assume that w is symplectic, so that W := w Aw- -+ A w is nonzero. Then for every
nonzero vector field X € Tx M, .xw’™ # 0, since every vector can be extended to a basis,
which evaluates to a nonzero number on every top form. By induction, we claim that

() exw'" = n(exw) A (W)

Indeed, the base case of n = 1 follows immediately. Then assuming the formula for n —1,

ixw" = 1x (WA W) = ixw AWM 0 A (LxwTY)
= (ixW) AWM WA (0= 1) (exw) Aw™2) = nixw) Aw !

By (1), it follows that since txw”™ # 0, txw # 0. Hence the nondegeneracy condition
follows.

Now,we assume that w satisfies the nondegeneracy condition, and prove that that w”\™ # 0.
We prove this by finding a basis { X1, Y1, ..., Xy, Yn } of T, M such that w""(X1, Y7, ..., X, Y,) =
1. We do this by inductively showing that we may find {X1,Y1,..., Xk, Y} such that for
every pair of bagis elements V, W,

(11) w(V,W)=0unless V =X;, W =Y, forsomei=1,...,k

and

(12) w(X;,Y)=1foralli=1,... k.
3



The base case of k = 1 is exactly the nondegeneracy condition described, after rescaling

Y as So we assume we have chosen {X1,Y7,..., X}, Y;} and seek to find Xy

w(X,Y)
and Yjiy1. Define the following linear map from T, M to itself:

k
oF T, M - T,M oW (v) =v+ (Z w(v, X;)Y; — w(v, }/i)Xi>
i=1
We claim that ¢§P is a projection, so that T, M = ker gbék) @ im ¢§;k) and ¢§;k)|
Indeed, observe that by the induction hypotheses (I1) and (12),

) = 1d.

im

(X)) =X;-X;=0 PV =Y;-Y;=0
Hence Hy, := spanp {X1,Y1,..., Xk, Yi} C ker gb;(vk). However, if v € ker gz&;(pk) (v), then

k
v = Zw(v, Y X —w(v, X;)Y;
i=1

so that v € Hy. It follows that ker ¢{") = Hy, and the image must be a (2n — 2k)-
dimensional subspace transverse to Hy. Next, note that

68 (00)) = 6 (v + %) = ¢ (v)

where ¥ is the sum in the definition of qbg(gk) which belongs to its kenrel. Hence qb;(nk) is the
identity on its image.

Finally, if Ly = im ¢§f), we claim that w is nondegenerate when restricted to Li. Indeed,
fix Xyy1 € Lg, and assume for contradiction that w(Xgiq,v) = 0 for all v € Lg. Since
T.M = Hi ® L, any w € T, M can be written as wyg + wr, where wyg € Hy and wy, € Ly.
Because Xyi1 € Lg, w(Xgt1,Xi) = w(Xgs1,Y:) = 0 (it follows from direct computation
that any X € Ly =im gf)g(f) must satisfy this property). Therefore, for any w € T, M

W(Xgr1,w) = w(Xgy1,wr) + w( X1, wh) =0
where one vanishing follows from the preceding observation, and the other follows from
the contradiction assumption. Since we have contradicted the nondegeneracy of w on T, M,
we conclude that w must also be nondegenerate on L;. This allows us to pick two vectors
Xky1 and Yy satisfying the desired properties.
The result follows.

(2) Observe that the nondegeneracy condition implies that the map ¥ : X(M) — Q! (M) defined
by ¥(X) = txwis a linear isomorphism, where X(M) denotes the space of vector fields.
Indeed, it suffices to show that the map is an isomorphism pointwise. Fixing « € M, notice
that the map ¥, : T,M — T} M defined by ¥,(X)(v) = w(X,v) is linear and the domain
and range have the same dimension. Furthermore, the nondegeneracy condition from the
previous problem implies that ker ¥, = {0}. Hence ¥, is an isomorphism for every z, and
¥ is an isomorphism on the space of sections, with inverse

V= a)(2) = (¥o) ™ (a(x)).
The vector field X, is exactly ¥—1(a) € X(M).



