SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 8

SOLUTIONS

Problem 1. Find an area form ω on S^{2} such that for any rotation about some axis in \mathbb{R}^{3}, R : $S^{2} \rightarrow S^{2}$, we have that $R^{*} \omega=\omega$. Prove the invariance property, and show that this volume form is unique up to positive scalar multiple.
[Remarks: You may use the natural coordinates for the tangent spaces as subspaces of \mathbb{R}^{3} (ie, you may write down a form on \mathbb{R}^{3} and restrict it to S^{2} to construct the form). You may use the fact that rotations around the coordinate axes generate the group of all rotations.]
Solution 1. We claim that the 2-form $\omega=x d y \wedge d z-y d x \wedge d z+z d x \wedge d y$ is invariant under all rotations. The rotations are generated by the vector fields

$$
\begin{aligned}
X_{1} & =y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} \\
X_{2} & =z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z} \\
X_{3} & =y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}
\end{aligned}
$$

We will show that $\mathcal{L}_{X_{i}} \omega=0$. We verify this for X_{1}, the equations for X_{2} and X_{3} follow similarly:

$$
\begin{aligned}
d \omega & =3 d x \wedge d y \wedge d z \\
\iota_{X_{1}} d \omega & =3 y d y \wedge d z+3 x d x \wedge d z \\
\iota_{X_{1}} \omega & =\left(-y^{2} d z+y z d y\right)-\left(x^{2} d z-x z d x\right) \\
& =x z d x+y z d y-\left(x^{2}+y^{2}\right) d z \\
d \iota_{X_{1}} \omega & =x d z \wedge d x+y d z \wedge d y-2 y d y \wedge d z-2 x d x \wedge d z \\
& =-3 x d x \wedge d z-3 y d y \wedge d z \\
\mathcal{L}_{X_{1}} \omega & =\iota_{X_{1}} d \omega+d \iota_{X_{1}} \omega \\
& =0 .
\end{aligned}
$$

The calcluation for $\mathcal{L}_{X_{2}}$ and $\mathcal{L}_{X_{3}}$ is analogous. To see that ω is unique up to scalar multiple, fix any point $x_{0} \in S^{2}$ and let β be any other 2 -form invariant under all rotations R. Then there exists a unique $c>0$ such that $\beta\left(x_{0}\right)=c \omega\left(x_{0}\right)$, since $\operatorname{dim} \Lambda^{2}\left(T_{x_{0}}\right)=\binom{2}{2}=1$. If $x \in S^{2}$ is any other point, there exists a rotation R such that $R(x)=x_{0}$. Then

$$
\begin{aligned}
\beta(x)\left(v_{1}, v_{2}\right)=R^{*} \beta(x) & \left(v_{1}, v_{2}\right)=\beta(R(x))\left(d R\left(v_{1}\right), d R\left(v_{2}\right)\right)=\beta\left(x_{0}\right)\left(d R\left(v_{1}, d R\left(v_{2}\right)\right)\right. \\
& =c \omega\left(x_{0}\right)\left(d R\left(v_{1}\right), d R\left(v_{2}\right)\right)=\left(R^{-1}\right)^{*} \omega\left(x_{0}\right)\left(d R\left(v_{1}\right), d R\left(v_{2}\right)\right)=c \omega(x)\left(v_{1}, v_{2}\right)
\end{aligned}
$$

Hence $\beta=c \omega$ as 2-forms.

Solution 2. With ω as in Solution 1, we verify $R^{*} \omega=\omega$ directly for rotations about the z-axis

$$
R=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Written as a function,

$$
R(x, y, z)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta, z) .
$$

Then

$$
R^{*} \omega(x, y, z)\left(v_{1}, v_{2}\right)=\omega(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta, z)\left(R v_{1}, R v_{2}\right)
$$

Where $R v_{1}$ denotes R acting as a matrix. It follows that

$$
\begin{aligned}
R^{*} \omega= & (x \cos \theta-y \sin \theta) d(x \sin \theta+y \cos \theta) \wedge d z \\
& -(x \sin \theta+y \cos \theta) d(x \cos \theta-y \sin \theta) \wedge d z+z d(x \cos \theta-y \sin \theta) \wedge d(x \sin \theta+y \cos \theta)
\end{aligned}
$$

Gathering like terms, we see that the $d x \wedge d z$ term is coefficient to

$$
(x \cos \theta-y \sin \theta) \cdot \sin \theta-(x \sin \theta+y \cos \theta) \cdot \cos \theta=-y\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=-y
$$

The $d y \wedge d z$ coefficent is

$$
(x \cos \theta-y \sin \theta) \cdot \cos \theta+(x \sin \theta+y \cos \theta) \cdot \sin \theta=x\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=x
$$

The $d x \wedge d y$ term is

$$
z[\cos \theta \cdot \cos \theta-(-\sin \theta \cdot \sin \theta)]=z\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=z
$$

It follows that $R^{*} \omega=\omega$. The proof of uniqueness follows as in Solution 1.

Problem 2.

(1) Prove the following convenient formula for the exterior derivative of a 1-form α, where X and Y are vector fields on M. Note that if $f \in C^{\infty}(M)$, then $X \cdot f$ denotes the derivative of f along the vector field X.

$$
d \alpha(X, Y)=X \cdot(\alpha(Y))-Y \cdot(\alpha(X))-\alpha([X, Y])
$$

[Hint: Any 1-form is locally a linear combination of forms of the form $u d v$ for $u, v \in C^{\infty}$. Evaluate both side of the desired equality for such forms.]
(2) Use this to find a formula for $\mathcal{L}_{X} \alpha(Y)$, where X and Y are C^{∞} vector fields and α is a 1-form on M. Think magically!

Solution. Consider a form $\alpha=u d v$. Then $d \alpha=d u \wedge d v$, so

$$
d \alpha(X, Y)=d u(X) d v(Y)-d u(Y) d v(X)=(X \cdot u)(Y \cdot v)-(Y \cdot u)(X \cdot v)
$$

On the other hand,

$$
\begin{aligned}
X \cdot(\alpha(Y)) & =X \cdot(u \cdot(Y \cdot v)) \\
& =(X \cdot u) \cdot(Y \cdot v)+u \cdot(X Y v) \\
-Y \cdot(\alpha(X)) & =-Y \cdot(u \cdot(X \cdot v)) \\
& =-(Y u) \cdot(X v)-u \cdot(Y X v) \\
-\alpha([X, Y]) & =-u(X Y v-Y X v)
\end{aligned}
$$

Adding each of these terms shows the desired equality. Finally,

$$
\begin{aligned}
\mathcal{L}_{X} \alpha(Y) & =\iota_{X} d \alpha(Y)+d\left(\iota_{X} \alpha\right)(Y) \\
& =X \cdot(\alpha(Y))-Y \cdot(\alpha(X))-\alpha([X, Y])+Y \cdot(\alpha(X)) \\
& =X \cdot(\alpha(Y))-\alpha([X, Y])
\end{aligned}
$$

Problem 3. Fix a $2 n$-dimensional manifold M. Recall that a 2 -form ω is called symplectic if $d \omega=0$ and the n-fold wedge product of ω is a volume form on M.
(1) Show that a closed 2-form ω is symplectic if and only if for every $x \in M$ and nonzero vector $X \in T_{x} M$, there exists $Y \in T_{x} M$ such that $\omega(X, Y) \neq 0$.
(2) Show that if α is any 1 -form on M, there exists a unique vector field X_{α} such that $\iota_{X_{\alpha}} \omega=\alpha$. Solution.
(1) First assume that ω is symplectic, so that $\omega^{\wedge n}:=\omega \wedge \omega \cdots \wedge \omega$ is nonzero. Then for every nonzero vector field $X \in T_{X} M, \iota_{X} \omega^{\wedge n} \neq 0$, since every vector can be extended to a basis, which evaluates to a nonzero number on every top form. By induction, we claim that

$$
\iota_{X} \omega^{\wedge n}=n\left(\iota_{X} \omega\right) \wedge\left(\omega^{\wedge n-1}\right)
$$

Indeed, the base case of $n=1$ follows immediately. Then assuming the formula for $n-1$,

$$
\begin{aligned}
\iota_{X} \omega^{\wedge n}=\iota_{X}\left(\omega \wedge \omega^{\wedge n-1}\right)= & \iota_{X} \omega \wedge \omega^{\wedge n-1}+\omega \wedge\left(\iota_{X} \omega^{\wedge n-1}\right) \\
& =\left(\iota_{X} \omega\right) \wedge \omega^{\wedge n-1}+\omega \wedge\left((n-1)\left(\iota_{X} \omega\right) \wedge \omega^{\wedge n-2}\right)=n\left(\iota_{X} \omega\right) \wedge \omega^{\wedge n-1}
\end{aligned}
$$

By (\dagger), it follows that since $\iota_{X} \omega^{\wedge n} \neq 0, \iota_{X} \omega \neq 0$. Hence the nondegeneracy condition follows.

Now, we assume that ω satisfies the nondegeneracy condition, and prove that that $\omega^{\wedge n} \neq 0$. We prove this by finding a basis $\left\{X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right\}$ of $T_{x} M$ such that $\omega^{\wedge n}\left(X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right)=$ 1. We do this by inductively showing that we may find $\left\{X_{1}, Y_{1}, \ldots, X_{k}, Y_{k}\right\}$ such that for every pair of basis elements V, W,

$$
\begin{equation*}
\omega(V, W)=0 \text { unless } V=X_{i}, W=Y_{i} \text { for some } i=1, \ldots, k \tag{I1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega\left(X_{i}, Y_{i}\right)=1 \text { for all } i=1, \ldots, k \tag{I2}
\end{equation*}
$$

The base case of $k=1$ is exactly the nondegeneracy condition described, after rescaling Y as $\frac{Y}{\omega(X, Y)}$. So we assume we have chosen $\left\{X_{1}, Y_{1}, \ldots, X_{k}, Y_{k}\right\}$ and seek to find X_{k+1} and Y_{k+1}. Define the following linear map from $T_{x} M$ to itself:

$$
\phi_{x}^{(k)}: T_{x} M \rightarrow T_{x} M \quad \phi_{x}^{(k)}(v)=v+\left(\sum_{i=1}^{k} \omega\left(v, X_{i}\right) Y_{i}-\omega\left(v, Y_{i}\right) X_{i}\right)
$$

We claim that $\phi_{x}^{(k)}$ is a projection, so that $T_{x} M=\operatorname{ker} \phi_{x}^{(k)} \oplus \operatorname{im} \phi_{x}^{(k)}$ and $\left.\phi_{x}^{(k)}\right|_{\mathrm{im} \phi_{x}^{(k)}}=\mathrm{Id}$. Indeed, observe that by the induction hypotheses (I1) and (I2),

$$
\phi_{x}^{(k)}\left(X_{j}\right)=X_{j}-X_{j}=0 \quad \phi_{x}^{(k)}\left(Y_{j}\right)=Y_{j}-Y_{j}=0
$$

Hence $H_{k}:=\operatorname{span}_{\mathbb{R}}\left\{X_{1}, Y_{1}, \ldots, X_{k}, Y_{k}\right\} \subset \operatorname{ker} \phi_{x}^{(k)}$. However, if $v \in \operatorname{ker} \phi_{x}^{(k)}(v)$, then

$$
v=\sum_{i=1}^{k} \omega\left(v, Y_{i}\right) X_{i}-\omega\left(v, X_{i}\right) Y_{i}
$$

so that $v \in H_{k}$. It follows that $\operatorname{ker} \phi_{x}^{(k)}=H_{k}$, and the image must be a $(2 n-2 k)$ dimensional subspace transverse to H_{k}. Next, note that

$$
\phi_{x}^{(k)}\left(\phi_{x}^{(v)}\right)=\phi_{x}^{(k)}(v+\Sigma)=\phi_{x}^{(k)}(v)
$$

where Σ is the sum in the definition of $\phi_{x}^{(k)}$ which belongs to its kenrel. Hence $\phi_{x}^{(k)}$ is the identity on its image.

Finally, if $L_{k}=\operatorname{im} \phi_{x}^{(k)}$, we claim that ω is nondegenerate when restricted to L_{k}. Indeed, fix $X_{k+1} \in L_{k}$, and assume for contradiction that $\omega\left(X_{k+1}, v\right)=0$ for all $v \in L_{k}$. Since $T_{x} M=H_{k} \oplus L_{k}$, any $w \in T_{x} M$ can be written as $w_{H}+w_{L}$, where $w_{H} \in H_{k}$ and $w_{L} \in L_{k}$. Because $X_{k+1} \in L_{k}, \omega\left(X_{k+1}, X_{i}\right)=\omega\left(X_{k+1}, Y_{i}\right)=0$ (it follows from direct computation that any $X \in L_{k}=\operatorname{im} \phi_{x}^{(k)}$ must satisfy this property). Therefore, for any $w \in T_{x} M$

$$
\omega\left(X_{k+1}, w\right)=\omega\left(X_{k+1}, w_{L}\right)+\omega\left(X_{k+1}, w_{H}\right)=0
$$

where one vanishing follows from the preceding observation, and the other follows from the contradiction assumption. Since we have contradicted the nondegeneracy of ω on $T_{x} M$, we conclude that ω must also be nondegenerate on L_{k}. This allows us to pick two vectors X_{k+1} and Y_{k+1} satisfying the desired properties.

The result follows.
(2) Observe that the nondegeneracy condition implies that the map $\Psi: \mathfrak{X}(M) \rightarrow \Omega^{1}(M)$ defined by $\Psi(X)=\iota_{X} \omega$ is a linear isomorphism, where $\mathfrak{X}(M)$ denotes the space of vector fields. Indeed, it suffices to show that the map is an isomorphism pointwise. Fixing $x \in M$, notice that the map $\Psi_{x}: T_{x} M \rightarrow T_{x}^{*} M$ defined by $\Psi_{x}(X)(v)=\omega(X, v)$ is linear and the domain and range have the same dimension. Furthermore, the nondegeneracy condition from the previous problem implies that $\operatorname{ker} \Psi_{x}=\{0\}$. Hence Ψ_{x} is an isomorphism for every x, and Ψ is an isomorphism on the space of sections, with inverse

$$
\Psi^{-1}(\alpha)(x)=\left(\Psi_{x}\right)^{-1}(\alpha(x))
$$

The vector field X_{α} is exactly $\Psi^{-1}(\alpha) \in \mathfrak{X}(M)$.

